Artículo
An Approximation Scheme for Uncertain Minimax Optimal Control Problems
Fecha de publicación:
12/2018
Editorial:
Springer
Revista:
Set-valued And Variational Analysis
ISSN:
1877-0533
e-ISSN:
1877-0541
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we address an uncertain minimax optimal control problem with linear dynamics where the objective functional is the expected value of the supremum of the running cost over a time interval. By taking an independently drawn random sample, the expected value function is approximated by the corresponding sample average function. We study the epi-convergence of the approximated objective functionals as well as the convergence of their global minimizers. Then we define an Euler discretization in time of the sample average problem and prove that the value of the discrete time problem converges to the value of the sample average approximation. In addition, we show that there exists a sequence of discrete problems such that the accumulation points of their minimizers are optimal solutions of the original problem. Finally, we propose a convergent descent method to solve the discrete time problem, and show some preliminary numerical results for two simple examples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Aragone, Laura Susana; Gianatti, Justina; Lotito, Pablo Andres; Parente, Lisandro Armando; An Approximation Scheme for Uncertain Minimax Optimal Control Problems; Springer; Set-valued And Variational Analysis; 26; 4; 12-2018; 843-866
Compartir
Altmétricas