Mostrar el registro sencillo del ítem
dc.contributor.author
Abi-Haidar, Alaa
dc.contributor.author
Kaur, Jasleen
dc.contributor.author
Maguitman, Ana Gabriela

dc.contributor.author
Radivojac, Pedrag
dc.contributor.author
Rechtsteiner, Andreas
dc.contributor.author
Verspoor, Karin
dc.contributor.author
Wang, Zhiping
dc.contributor.author
Rocha, Luis
dc.date.available
2019-04-26T16:42:46Z
dc.date.issued
2008-09-01
dc.identifier.citation
Abi-Haidar, Alaa; Kaur, Jasleen; Maguitman, Ana Gabriela; Radivojac, Pedrag; Rechtsteiner, Andreas; et al.; Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks; BioMed Central; Genome Biology; 9; Supl. 2; 1-9-2008; S11-S30
dc.identifier.issn
1474-760X
dc.identifier.uri
http://hdl.handle.net/11336/75086
dc.description.abstract
Background: We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks. Results: Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. Conclusion: Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Support Vector Machine
dc.subject
Singular Value Decomposition
dc.subject
Word Pair
dc.subject
Singular Value Decomposition Method
dc.subject
Proximity Network
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-27T13:31:06Z
dc.journal.volume
9
dc.journal.number
Supl. 2
dc.journal.pagination
S11-S30
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Abi-Haidar, Alaa. Indiana University; Estados Unidos. Fundação Luso-Americana para o Desenvolvimento; Portugal
dc.description.fil
Fil: Kaur, Jasleen. Indiana University; Estados Unidos
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Radivojac, Pedrag. Indiana University; Estados Unidos
dc.description.fil
Fil: Rechtsteiner, Andreas. Indiana University; Estados Unidos
dc.description.fil
Fil: Verspoor, Karin. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
dc.description.fil
Fil: Wang, Zhiping. Indiana University; Estados Unidos
dc.description.fil
Fil: Rocha, Luis. Fundação Luso-Americana para o Desenvolvimento; Portugal. Indiana University; Estados Unidos
dc.journal.title
Genome Biology

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559982/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/gb-2008-9-S2-S11
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-s2-s11
Archivos asociados