Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks

Abi-Haidar, Alaa; Kaur, Jasleen; Maguitman, Ana GabrielaIcon ; Radivojac, Pedrag; Rechtsteiner, Andreas; Verspoor, Karin; Wang, Zhiping; Rocha, Luis
Fecha de publicación: 01/09/2008
Editorial: BioMed Central
Revista: Genome Biology
ISSN: 1474-760X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Background: We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks. Results: Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. Conclusion: Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.
Palabras clave: Support Vector Machine , Singular Value Decomposition , Word Pair , Singular Value Decomposition Method , Proximity Network
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.041Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/75086
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559982/
DOI: http://dx.doi.org/10.1186/gb-2008-9-S2-S11
URL: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-s2-s11
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Abi-Haidar, Alaa; Kaur, Jasleen; Maguitman, Ana Gabriela; Radivojac, Pedrag; Rechtsteiner, Andreas; et al.; Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks; BioMed Central; Genome Biology; 9; Supl. 2; 1-9-2008; S11-S30
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES