Mostrar el registro sencillo del ítem
dc.contributor.author
Bera, Anil K.
dc.contributor.author
Galvao, Antonio F.
dc.contributor.author
Montes Rojas, Gabriel Victorio
dc.contributor.author
Park, Sung Y.
dc.date.available
2019-04-22T19:31:20Z
dc.date.issued
2016-01
dc.identifier.citation
Bera, Anil K.; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Park, Sung Y.; Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression; De Gruyter; Journal of Econometric Methods; 5; 1; 1-2016; 79-101
dc.identifier.issn
2156-6674
dc.identifier.uri
http://hdl.handle.net/11336/74712
dc.description.abstract
This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Laplace
dc.subject
Quantile Regression
dc.subject
Maximum Entropy
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-22T13:36:38Z
dc.journal.volume
5
dc.journal.number
1
dc.journal.pagination
79-101
dc.journal.pais
China
dc.description.fil
Fil: Bera, Anil K.. University of Illinois at Urbana; Estados Unidos
dc.description.fil
Fil: Galvao, Antonio F.. University of Iowa; Estados Unidos
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. City University of London; Reino Unido
dc.description.fil
Fil: Park, Sung Y.. Chung-ang University; Corea del Sur
dc.journal.title
Journal of Econometric Methods
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jem.2016.5.issue-1/jem-2014-0018/jem-2014-0018.xml
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/jem-2014-0018
Archivos asociados