Mostrar el registro sencillo del ítem

dc.contributor.author
Bera, Anil K.  
dc.contributor.author
Galvao, Antonio F.  
dc.contributor.author
Montes Rojas, Gabriel Victorio  
dc.contributor.author
Park, Sung Y.  
dc.date.available
2019-04-22T19:31:20Z  
dc.date.issued
2016-01  
dc.identifier.citation
Bera, Anil K.; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Park, Sung Y.; Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression; De Gruyter; Journal of Econometric Methods; 5; 1; 1-2016; 79-101  
dc.identifier.issn
2156-6674  
dc.identifier.uri
http://hdl.handle.net/11336/74712  
dc.description.abstract
This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Laplace  
dc.subject
Quantile Regression  
dc.subject
Maximum Entropy  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-22T13:36:38Z  
dc.journal.volume
5  
dc.journal.number
1  
dc.journal.pagination
79-101  
dc.journal.pais
China  
dc.description.fil
Fil: Bera, Anil K.. University of Illinois at Urbana; Estados Unidos  
dc.description.fil
Fil: Galvao, Antonio F.. University of Iowa; Estados Unidos  
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. City University of London; Reino Unido  
dc.description.fil
Fil: Park, Sung Y.. Chung-ang University; Corea del Sur  
dc.journal.title
Journal of Econometric Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jem.2016.5.issue-1/jem-2014-0018/jem-2014-0018.xml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/jem-2014-0018