Artículo
Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression
Fecha de publicación:
01/2016
Editorial:
De Gruyter
Revista:
Journal of Econometric Methods
ISSN:
2156-6674
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.
Palabras clave:
Laplace
,
Quantile Regression
,
Maximum Entropy
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Bera, Anil K.; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Park, Sung Y.; Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression; De Gruyter; Journal of Econometric Methods; 5; 1; 1-2016; 79-101
Compartir
Altmétricas