Mostrar el registro sencillo del ítem

dc.contributor.author
Redelico, Francisco Oscar  
dc.contributor.author
Traversaro Varela, Francisco  
dc.contributor.author
García, María del Carmen  
dc.contributor.author
Silva, Walter  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Risk, Marcelo  
dc.date.available
2019-03-26T17:51:50Z  
dc.date.issued
2017-02  
dc.identifier.citation
Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-12  
dc.identifier.issn
1099-4300  
dc.identifier.uri
http://hdl.handle.net/11336/72557  
dc.description.abstract
In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Classification Analysis  
dc.subject
Electroencephalography  
dc.subject
Permutation Entropy  
dc.subject
Permutation Min-Entropy  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-21T14:19:29Z  
dc.journal.volume
19  
dc.journal.number
2  
dc.journal.pagination
1-12  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: García, María del Carmen. Hospital Italiano; Argentina  
dc.description.fil
Fil: Silva, Walter. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Hospital Italiano; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Entropy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/19/2/72  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/e19020072