Mostrar el registro sencillo del ítem
dc.contributor.author
Redelico, Francisco Oscar
dc.contributor.author
Traversaro Varela, Francisco
dc.contributor.author
García, María del Carmen
dc.contributor.author
Silva, Walter
dc.contributor.author
Rosso, Osvaldo Aníbal
dc.contributor.author
Risk, Marcelo
dc.date.available
2019-03-26T17:51:50Z
dc.date.issued
2017-02
dc.identifier.citation
Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-12
dc.identifier.issn
1099-4300
dc.identifier.uri
http://hdl.handle.net/11336/72557
dc.description.abstract
In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Classification Analysis
dc.subject
Electroencephalography
dc.subject
Permutation Entropy
dc.subject
Permutation Min-Entropy
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-21T14:19:29Z
dc.journal.volume
19
dc.journal.number
2
dc.journal.pagination
1-12
dc.journal.pais
Suiza
dc.description.fil
Fil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: García, María del Carmen. Hospital Italiano; Argentina
dc.description.fil
Fil: Silva, Walter. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Hospital Italiano; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Entropy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/19/2/72
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/e19020072
Archivos asociados