Artículo
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier
Redelico, Francisco Oscar
; Traversaro Varela, Francisco
; García, María del Carmen; Silva, Walter
; Rosso, Osvaldo Aníbal
; Risk, Marcelo
Fecha de publicación:
02/2017
Editorial:
Molecular Diversity Preservation International
Revista:
Entropy
ISSN:
1099-4300
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-12
Compartir
Altmétricas