Mostrar el registro sencillo del ítem
dc.contributor.author
Budde, Carlos Ernesto
dc.contributor.author
D'argenio, Pedro Ruben
dc.contributor.author
Hartmanns, Arnd
dc.date.available
2019-03-22T19:12:40Z
dc.date.issued
2017-10
dc.identifier.citation
Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-58
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/72324
dc.description.abstract
Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Rare Event Simulation
dc.subject
Importance Splitting
dc.subject
Transient Analysis
dc.subject
Expected Success
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Better automated importance splitting for transient rare events
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-18T19:26:10Z
dc.journal.volume
10606 LNCS
dc.journal.pagination
42-58
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Budde, Carlos Ernesto. Universiteit Twente; Países Bajos. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos
dc.journal.title
Lecture Notes in Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-3-319-69483-2_3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-69483-2_3
Archivos asociados