Mostrar el registro sencillo del ítem

dc.contributor.author
Budde, Carlos Ernesto  
dc.contributor.author
D'argenio, Pedro Ruben  
dc.contributor.author
Hartmanns, Arnd  
dc.date.available
2019-03-22T19:12:40Z  
dc.date.issued
2017-10  
dc.identifier.citation
Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-58  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/72324  
dc.description.abstract
Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Rare Event Simulation  
dc.subject
Importance Splitting  
dc.subject
Transient Analysis  
dc.subject
Expected Success  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Better automated importance splitting for transient rare events  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-18T19:26:10Z  
dc.journal.volume
10606 LNCS  
dc.journal.pagination
42-58  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Budde, Carlos Ernesto. Universiteit Twente; Países Bajos. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos  
dc.journal.title
Lecture Notes in Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-3-319-69483-2_3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-69483-2_3