Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Better automated importance splitting for transient rare events

Budde, Carlos Ernesto; D'argenio, Pedro RubenIcon ; Hartmanns, Arnd
Fecha de publicación: 10/2017
Editorial: Springer Verlag Berlín
Revista: Lecture Notes in Computer Science
ISSN: 0302-9743
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Statistical model checking uses simulation to overcome the state space explosion problem in formal verification. Yet its runtime explodes when faced with rare events, unless a rare event simulation method like importance splitting is used. The effectiveness of importance splitting hinges on nontrivial model-specific inputs: an importance function with matching splitting thresholds. This prevents its use by non-experts for general classes of models. In this paper, we propose new method combinations with the goal of fully automating the selection of all parameters for importance splitting. We focus on transient (reachability) properties, which particularly challenged previous techniques, and present an exhaustive practical evaluation of the new approaches on case studies from the literature. We find that using Restart simulations with a compositionally constructed importance function and thresholds determined via a new expected success method most reliably succeeds and performs very well. Our implementation within the Modest Toolset supports various classes of formal stochastic models and is publicly available.
Palabras clave: Rare Event Simulation , Importance Splitting , Transient Analysis , Expected Success
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.030Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/72324
DOI: https://dx.doi.org/10.1007/978-3-319-69483-2_3
URL: https://link.springer.com/chapter/10.1007%2F978-3-319-69483-2_3
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Budde, Carlos Ernesto; D'argenio, Pedro Ruben; Hartmanns, Arnd; Better automated importance splitting for transient rare events; Springer Verlag Berlín; Lecture Notes in Computer Science; 10606 LNCS; 10-2017; 42-58
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES