Mostrar el registro sencillo del ítem

dc.contributor.author
Langrock, Roland  
dc.contributor.author
King, Ruth  
dc.contributor.author
Matthiopoulos, Jason  
dc.contributor.author
Thomas, Len  
dc.contributor.author
Fortin, Daniel  
dc.contributor.author
Morales, Juan Manuel  
dc.date.available
2019-03-08T21:36:31Z  
dc.date.issued
2012-11-01  
dc.identifier.citation
Langrock, Roland; King, Ruth; Matthiopoulos, Jason; Thomas, Len; Fortin, Daniel; et al.; Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions; Ecological Society of America; Ecology; 93; 11; 1-11-2012; 2336-2342  
dc.identifier.issn
0012-9658  
dc.identifier.uri
http://hdl.handle.net/11336/71319  
dc.description.abstract
We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Ecological Society of America  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Behavioral State  
dc.subject
Bison Bison  
dc.subject
Maximum Likelihood  
dc.subject
Random Effects  
dc.subject
Random Walk  
dc.subject
Semi-Markov Model  
dc.subject
State-Space Model  
dc.subject
Telemetry Data  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-12T16:53:54Z  
dc.identifier.eissn
1939-9170  
dc.journal.volume
93  
dc.journal.number
11  
dc.journal.pagination
2336-2342  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Langrock, Roland. University of St. Andrews; Reino Unido  
dc.description.fil
Fil: King, Ruth. University of St. Andrews; Reino Unido  
dc.description.fil
Fil: Matthiopoulos, Jason. University of St. Andrews; Reino Unido  
dc.description.fil
Fil: Thomas, Len. University of St. Andrews; Reino Unido  
dc.description.fil
Fil: Fortin, Daniel. Laval University; Canadá  
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentina  
dc.journal.title
Ecology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/11-2241.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1890/11-2241.1