Mostrar el registro sencillo del ítem
dc.contributor.author
Langrock, Roland
dc.contributor.author
King, Ruth
dc.contributor.author
Matthiopoulos, Jason
dc.contributor.author
Thomas, Len
dc.contributor.author
Fortin, Daniel
dc.contributor.author
Morales, Juan Manuel
dc.date.available
2019-03-08T21:36:31Z
dc.date.issued
2012-11-01
dc.identifier.citation
Langrock, Roland; King, Ruth; Matthiopoulos, Jason; Thomas, Len; Fortin, Daniel; et al.; Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions; Ecological Society of America; Ecology; 93; 11; 1-11-2012; 2336-2342
dc.identifier.issn
0012-9658
dc.identifier.uri
http://hdl.handle.net/11336/71319
dc.description.abstract
We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Ecological Society of America
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Behavioral State
dc.subject
Bison Bison
dc.subject
Maximum Likelihood
dc.subject
Random Effects
dc.subject
Random Walk
dc.subject
Semi-Markov Model
dc.subject
State-Space Model
dc.subject
Telemetry Data
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-02-12T16:53:54Z
dc.identifier.eissn
1939-9170
dc.journal.volume
93
dc.journal.number
11
dc.journal.pagination
2336-2342
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Langrock, Roland. University of St. Andrews; Reino Unido
dc.description.fil
Fil: King, Ruth. University of St. Andrews; Reino Unido
dc.description.fil
Fil: Matthiopoulos, Jason. University of St. Andrews; Reino Unido
dc.description.fil
Fil: Thomas, Len. University of St. Andrews; Reino Unido
dc.description.fil
Fil: Fortin, Daniel. Laval University; Canadá
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentina
dc.journal.title
Ecology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/11-2241.1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1890/11-2241.1
Archivos asociados