Artículo
Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions
Langrock, Roland; King, Ruth; Matthiopoulos, Jason; Thomas, Len; Fortin, Daniel; Morales, Juan Manuel
Fecha de publicación:
01/11/2012
Editorial:
Ecological Society of America
Revista:
Ecology
ISSN:
0012-9658
e-ISSN:
1939-9170
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Langrock, Roland; King, Ruth; Matthiopoulos, Jason; Thomas, Len; Fortin, Daniel; et al.; Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions; Ecological Society of America; Ecology; 93; 11; 1-11-2012; 2336-2342
Compartir
Altmétricas