Mostrar el registro sencillo del ítem

dc.contributor.author
Tomassi, Diego Rodolfo  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Bura, Efstathia  
dc.contributor.author
Pfeiffer, Ruth  
dc.date.available
2019-03-07T16:15:22Z  
dc.date.issued
2017-03  
dc.identifier.citation
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth; Sufficient dimension reduction for censored predictors; Wiley Blackwell Publishing, Inc; Biometrics; 73; 1; 3-2017; 220-231  
dc.identifier.issn
0006-341X  
dc.identifier.uri
http://hdl.handle.net/11336/71171  
dc.description.abstract
Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Informative Missingness  
dc.subject
Limits of Detection  
dc.subject
Missing Data  
dc.subject
Penalized Likelihood  
dc.subject
Shrinkage  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sufficient dimension reduction for censored predictors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-25T19:52:58Z  
dc.journal.volume
73  
dc.journal.number
1  
dc.journal.pagination
220-231  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Bura, Efstathia. The George Washington University; Estados Unidos  
dc.description.fil
Fil: Pfeiffer, Ruth. National Cancer Institute; Estados Unidos  
dc.journal.title
Biometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/biom.12556  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12556  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543825/