Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sufficient dimension reduction for censored predictors

Tomassi, Diego RodolfoIcon ; Forzani, Liliana MariaIcon ; Bura, Efstathia; Pfeiffer, Ruth
Fecha de publicación: 03/2017
Editorial: Wiley Blackwell Publishing, Inc
Revista: Biometrics
ISSN: 0006-341X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR.
Palabras clave: Informative Missingness , Limits of Detection , Missing Data , Penalized Likelihood , Shrinkage
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 410.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/71171
DOI: http://dx.doi.org/10.1111/biom.12556
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12556
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543825/
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth; Sufficient dimension reduction for censored predictors; Wiley Blackwell Publishing, Inc; Biometrics; 73; 1; 3-2017; 220-231
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES