Mostrar el registro sencillo del ítem

dc.contributor.author
Rosales, Marta Beatriz  
dc.contributor.author
Filipich, Carlos Pedro  
dc.contributor.author
Buezas, Fernando Salvador  
dc.date.available
2019-02-04T14:50:32Z  
dc.date.issued
2009-10  
dc.identifier.citation
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264  
dc.identifier.issn
0141-0296  
dc.identifier.uri
http://hdl.handle.net/11336/69260  
dc.description.abstract
Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Artificial Neural Network  
dc.subject
Beam  
dc.subject
Crack Detection  
dc.subject
Inverse Method  
dc.subject
Spinning Beam  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Crack detection in beam-like structures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-23T17:50:34Z  
dc.journal.volume
31  
dc.journal.number
10  
dc.journal.pagination
2257-2264  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.description.fil
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina  
dc.description.fil
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina  
dc.journal.title
Engineering Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engstruct.2009.04.007