Mostrar el registro sencillo del ítem
dc.contributor.author
Rosales, Marta Beatriz
dc.contributor.author
Filipich, Carlos Pedro
dc.contributor.author
Buezas, Fernando Salvador
dc.date.available
2019-02-04T14:50:32Z
dc.date.issued
2009-10
dc.identifier.citation
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264
dc.identifier.issn
0141-0296
dc.identifier.uri
http://hdl.handle.net/11336/69260
dc.description.abstract
Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Artificial Neural Network
dc.subject
Beam
dc.subject
Crack Detection
dc.subject
Inverse Method
dc.subject
Spinning Beam
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Crack detection in beam-like structures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-23T17:50:34Z
dc.journal.volume
31
dc.journal.number
10
dc.journal.pagination
2257-2264
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
dc.description.fil
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
dc.journal.title
Engineering Structures
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engstruct.2009.04.007
Archivos asociados