Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Crack detection in beam-like structures

Rosales, Marta BeatrizIcon ; Filipich, Carlos Pedro; Buezas, Fernando SalvadorIcon
Fecha de publicación: 10/2009
Editorial: Elsevier
Revista: Engineering Structures
ISSN: 0141-0296
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
Palabras clave: Artificial Neural Network , Beam , Crack Detection , Inverse Method , Spinning Beam
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.384Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/69260
URL: https://www.sciencedirect.com/science/article/pii/S0141029609001448
DOI: http://dx.doi.org/10.1016/j.engstruct.2009.04.007
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES