Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Galicer, Daniel Eric  
dc.date.available
2019-01-31T18:34:36Z  
dc.date.issued
2010-03  
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-680  
dc.identifier.issn
0034-5318  
dc.identifier.uri
http://hdl.handle.net/11336/69129  
dc.description.abstract
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Kyoto Univeristy  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Extension of Polynomials  
dc.subject
Polynomial Ideals  
dc.subject
Symmetric Tensor Products of Banach Spaces  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Extending polynomials in maximal and minimal ideals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-23T17:16:17Z  
dc.identifier.eissn
1663-4926  
dc.journal.volume
46  
dc.journal.number
3  
dc.journal.pagination
669-680  
dc.journal.pais
Japón  
dc.journal.ciudad
Tokio  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Publications Of The Research Institute For Mathematical Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0910.3888  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=46&iss=3&rank=8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2977/PRIMS/21