Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Galicer, Daniel Eric
dc.date.available
2019-01-31T18:34:36Z
dc.date.issued
2010-03
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-680
dc.identifier.issn
0034-5318
dc.identifier.uri
http://hdl.handle.net/11336/69129
dc.description.abstract
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Kyoto Univeristy
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Extension of Polynomials
dc.subject
Polynomial Ideals
dc.subject
Symmetric Tensor Products of Banach Spaces
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Extending polynomials in maximal and minimal ideals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-23T17:16:17Z
dc.identifier.eissn
1663-4926
dc.journal.volume
46
dc.journal.number
3
dc.journal.pagination
669-680
dc.journal.pais
Japón
dc.journal.ciudad
Tokio
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Publications Of The Research Institute For Mathematical Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0910.3888
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=46&iss=3&rank=8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2977/PRIMS/21
Archivos asociados