Artículo
Extending polynomials in maximal and minimal ideals
Fecha de publicación:
03/2010
Editorial:
Kyoto Univeristy
Revista:
Publications Of The Research Institute For Mathematical Sciences
ISSN:
0034-5318
e-ISSN:
1663-4926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-680
Compartir
Altmétricas