Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Control Multimodal en Entornos Inciertos usando Aprendizaje por Refuerzos y Procesos Gaussianos

de Paula, MarianoIcon ; Avila, Luis OmarIcon ; Sánchez Reinoso, Carlos RobertoIcon ; Acosta, Gerardo GabrielIcon
Fecha de publicación: 10/2015
Editorial: Elsevier
Revista: Revista Iberoamericana de Automatica E Informatica Industrial
ISSN: 1697-7912
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

 
El control de sistemas complejos puede ser realizado descomponiendo la tarea de control en una secuencia de modos de control, o simplemente modos. Cada modo implementa una ley de retroalimentación hasta que se activa una condición de terminación, en respuesta a la ocurrencia de un evento exógeno/endógeno que indica que la ejecución del modo debe finalizar. En este trabajo se presenta una propuesta novedosa para encontrar una política de conmutación óptima para resolver el problema de control optimizando alguna medida de costo/beneficio. Una política óptima implementa un programa de control multimodal  óptimo, el cual consiste en un encadenamiento de modos de control. La propuesta realizada incluye el desarrollo y formulación de un algoritmo basado en la idea de la programación dinámica integrando procesos Gaussianos y aprendizaje Bayesiano activo. Mediante el enfoque propuesto es posible realizar un uso eficiente de los datos para mejorar la exploración de las soluciones sobre espacios de estados continuos. Un caso de estudio representativo es abordado para demostrar el desempeño del algoritmo propuesto.
 
The control of complex systems can be done decomposing the control task into a sequence of control modes, or modes for short. Each mode implements a parameterized feedback law until a termination condition is activated in response to the occurrence of an exogenous/endogenous event, which indicates that the execution mode must end. This paper presents a novel approach to find an optimal switching policy to solve a control problem by optimizing some measure of cost/benefit. An optimal policy implements an optimal multimodal control program, consisting in a sequence of control modes. The proposal includes the development of an algorithm based on the idea of dynamic programming integrating Gaussian processes and Bayesian active learning. In addition, an efficient use of the data to improve the exploration of the continuous state spaces solutions can be achieved through this approach. A representative case study is discussed and analyzed to demonstrate the performance of the proposed algorithm.
 
Palabras clave: Control Multimodal , Programación Dinámica , Procesos Gaussianos , Incertidumbre , Política
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.768Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/6896
URL: http://www.sciencedirect.com/science/article/pii/S1697791215000552
URL: http://goo.gl/yZeVQN
DOI: http://dx.doi.org/ 10.1016/j.riai.2015.09.004
DOI: http://dx.doi.org/10.1016/j.riai.2015.09.004
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(CIFICEN)
Articulos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
de Paula, Mariano; Avila, Luis Omar; Sánchez Reinoso, Carlos Roberto; Acosta, Gerardo Gabriel; Control Multimodal en Entornos Inciertos usando Aprendizaje por Refuerzos y Procesos Gaussianos; Elsevier; Revista Iberoamericana de Automatica E Informatica Industrial; 12; 4; 10-2015; 385-396
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES