Mostrar el registro sencillo del ítem
dc.contributor.author
Peña, Daniel
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2019-01-28T17:16:03Z
dc.date.issued
2016-07
dc.identifier.citation
Peña, Daniel; Yohai, Victor Jaime; Generalized Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 111; 515; 7-2016; 1121-1131
dc.identifier.issn
0162-1459
dc.identifier.uri
http://hdl.handle.net/11336/68735
dc.description.abstract
Brillinger defined dynamic principal components (DPC) for time series based on a reconstruction criterion. He gave a very elegant theoretical solution and proposed an estimator which is consistent under stationarity. Here, we propose a new enterally empirical approach to DPC. The main differences with the existing methods—mainly Brillinger procedure—are (1) the DPC we propose need not be a linear combination of the observations and (2) it can be based on a variety of loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results; however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a better adaptation to possible nonstationary features of the series. We also present a robust version of our procedure that allows to estimate the DPC when the series have outlier contamination. We give iterative algorithms to compute the proposed procedures that can be used with a large number of variables. Our nonrobust and robust procedures are illustrated with real datasets. Supplementary materials for this article are available online.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Statistical Association
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Dimensionality Reduction
dc.subject
Reconstruction of Data
dc.subject
Vector Time Series
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Generalized Dynamic Principal Components
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-14T18:53:17Z
dc.journal.volume
111
dc.journal.number
515
dc.journal.pagination
1121-1131
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; España
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of The American Statistical Association
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2015.1072542
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2015.1072542
Archivos asociados