Mostrar el registro sencillo del ítem

dc.contributor.author
Peña, Daniel  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2019-01-28T17:16:03Z  
dc.date.issued
2016-07  
dc.identifier.citation
Peña, Daniel; Yohai, Victor Jaime; Generalized Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 111; 515; 7-2016; 1121-1131  
dc.identifier.issn
0162-1459  
dc.identifier.uri
http://hdl.handle.net/11336/68735  
dc.description.abstract
Brillinger defined dynamic principal components (DPC) for time series based on a reconstruction criterion. He gave a very elegant theoretical solution and proposed an estimator which is consistent under stationarity. Here, we propose a new enterally empirical approach to DPC. The main differences with the existing methods—mainly Brillinger procedure—are (1) the DPC we propose need not be a linear combination of the observations and (2) it can be based on a variety of loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results; however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a better adaptation to possible nonstationary features of the series. We also present a robust version of our procedure that allows to estimate the DPC when the series have outlier contamination. We give iterative algorithms to compute the proposed procedures that can be used with a large number of variables. Our nonrobust and robust procedures are illustrated with real datasets. Supplementary materials for this article are available online.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Statistical Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dimensionality Reduction  
dc.subject
Reconstruction of Data  
dc.subject
Vector Time Series  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Generalized Dynamic Principal Components  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-14T18:53:17Z  
dc.journal.volume
111  
dc.journal.number
515  
dc.journal.pagination
1121-1131  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of The American Statistical Association  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2015.1072542  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2015.1072542