Artículo
Generalized Dynamic Principal Components
Fecha de publicación:
07/2016
Editorial:
American Statistical Association
Revista:
Journal of The American Statistical Association
ISSN:
0162-1459
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Brillinger defined dynamic principal components (DPC) for time series based on a reconstruction criterion. He gave a very elegant theoretical solution and proposed an estimator which is consistent under stationarity. Here, we propose a new enterally empirical approach to DPC. The main differences with the existing methods—mainly Brillinger procedure—are (1) the DPC we propose need not be a linear combination of the observations and (2) it can be based on a variety of loss functions including robust ones. Unlike Brillinger, we do not establish any consistency results; however, contrary to Brillinger’s, which has a very strong stationarity flavor, our concept aims at a better adaptation to possible nonstationary features of the series. We also present a robust version of our procedure that allows to estimate the DPC when the series have outlier contamination. We give iterative algorithms to compute the proposed procedures that can be used with a large number of variables. Our nonrobust and robust procedures are illustrated with real datasets. Supplementary materials for this article are available online.
Palabras clave:
Dimensionality Reduction
,
Reconstruction of Data
,
Vector Time Series
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Peña, Daniel; Yohai, Victor Jaime; Generalized Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 111; 515; 7-2016; 1121-1131
Compartir
Altmétricas