Mostrar el registro sencillo del ítem

dc.contributor.author
Duran, Ricardo Guillermo  
dc.contributor.author
Lopez Garcia, Fernando Alfonso  
dc.date.available
2019-01-23T20:07:56Z  
dc.date.issued
2010-01  
dc.identifier.citation
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120  
dc.identifier.issn
0218-2025  
dc.identifier.uri
http://hdl.handle.net/11336/68478  
dc.description.abstract
If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Divergence Operator  
dc.subject
Hólder-Α Domains  
dc.subject
Stokes Equations  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-23T17:15:59Z  
dc.journal.volume
20  
dc.journal.number
1  
dc.journal.pagination
95-120  
dc.journal.pais
Singapur  
dc.description.fil
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Mathematical Models And Methods In Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0218202510004167  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202510004167