Artículo
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
Fecha de publicación:
01/2010
Editorial:
World Scientific
Revista:
Mathematical Models And Methods In Applied Sciences
ISSN:
0218-2025
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.
Palabras clave:
Divergence Operator
,
Hólder-Α Domains
,
Stokes Equations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120
Compartir
Altmétricas