Mostrar el registro sencillo del ítem

dc.contributor.author
Rotnitzky, Andrea Gloria  
dc.contributor.author
Lei, Quanhong  
dc.contributor.author
Sued, Raquel Mariela  
dc.contributor.author
Robins, James M.  
dc.date.available
2019-01-22T18:43:11Z  
dc.date.issued
2012-06  
dc.identifier.citation
Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-456  
dc.identifier.issn
0006-3444  
dc.identifier.uri
http://hdl.handle.net/11336/68404  
dc.description.abstract
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Drop-Out  
dc.subject
Marginal Structural Model  
dc.subject
Missing at Random  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improved double-robust estimation in missing data and causal inference models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-22T15:10:34Z  
dc.journal.volume
99  
dc.journal.number
2  
dc.journal.pagination
439-456  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina  
dc.description.fil
Fil: Lei, Quanhong. Harvard University; Estados Unidos  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Robins, James M.. Harvard University; Estados Unidos  
dc.journal.title
Biometrika  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/biomet/ass013  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/99/2/439/306137