Mostrar el registro sencillo del ítem
dc.contributor.author
Rotnitzky, Andrea Gloria
dc.contributor.author
Lei, Quanhong
dc.contributor.author
Sued, Raquel Mariela
dc.contributor.author
Robins, James M.
dc.date.available
2019-01-22T18:43:11Z
dc.date.issued
2012-06
dc.identifier.citation
Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-456
dc.identifier.issn
0006-3444
dc.identifier.uri
http://hdl.handle.net/11336/68404
dc.description.abstract
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Drop-Out
dc.subject
Marginal Structural Model
dc.subject
Missing at Random
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Improved double-robust estimation in missing data and causal inference models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-22T15:10:34Z
dc.journal.volume
99
dc.journal.number
2
dc.journal.pagination
439-456
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina
dc.description.fil
Fil: Lei, Quanhong. Harvard University; Estados Unidos
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Robins, James M.. Harvard University; Estados Unidos
dc.journal.title
Biometrika
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/biomet/ass013
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/99/2/439/306137
Archivos asociados