Artículo
Improved double-robust estimation in missing data and causal inference models
Fecha de publicación:
06/2012
Editorial:
Oxford University Press
Revista:
Biometrika
ISSN:
0006-3444
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.
Palabras clave:
Drop-Out
,
Marginal Structural Model
,
Missing at Random
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-456
Compartir
Altmétricas