Mostrar el registro sencillo del ítem

dc.contributor.author
Danilov, Mike  
dc.contributor.author
Yohai, Victor Jaime  
dc.contributor.author
Zamar, Ruben Horacio  
dc.date.available
2019-01-22T15:56:35Z  
dc.date.issued
2012-09  
dc.identifier.citation
Danilov, Mike; Yohai, Victor Jaime; Zamar, Ruben Horacio; Robust estimation of multivariate location and scatter in the presence of missing data; American Statistical Association; Journal of The American Statistical Association; 107; 499; 9-2012; 1178-1186  
dc.identifier.issn
0162-1459  
dc.identifier.uri
http://hdl.handle.net/11336/68375  
dc.description.abstract
Two main issues regarding data quality are data contamination (outliers) and data completion (missing data). These two problems have attracted much attention and research but surprisingly, they are seldom considered together. Popular robust methods such as S-estimators of multivariate location and scatter offer protection against outliers but cannot deal with missing data, except for the obviously inefficient approach of deleting all incomplete cases. We generalize the definition of S-estimators of multivariate location and scatter to simultaneously deal with missing data and outliers. We show that the proposed estimators are strongly consistent under elliptical models when data are missing completely at random. We derive an algorithm similar to the Expectation-Maximization algorithm for computing the proposed estimators. This algorithm is initialized by an extension for missing data of the minimum volume ellipsoid. We assess the performance of our proposal by Monte Carlo simulation and give some real data examples. This article has supplementary material online.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Statistical Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Consistent  
dc.subject
Elliptical Distribution  
dc.subject
Em Algorithm  
dc.subject
Fixed Point Equation  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimation of multivariate location and scatter in the presence of missing data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-16T18:28:19Z  
dc.journal.volume
107  
dc.journal.number
499  
dc.journal.pagination
1178-1186  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Danilov, Mike. Google; Estados Unidos  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Zamar, Ruben Horacio. University of British Columbia; Canadá  
dc.journal.title
Journal of The American Statistical Association  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2012.699792  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2012.699792