Mostrar el registro sencillo del ítem
dc.contributor.author
Danilov, Mike
dc.contributor.author
Yohai, Victor Jaime
dc.contributor.author
Zamar, Ruben Horacio
dc.date.available
2019-01-22T15:56:35Z
dc.date.issued
2012-09
dc.identifier.citation
Danilov, Mike; Yohai, Victor Jaime; Zamar, Ruben Horacio; Robust estimation of multivariate location and scatter in the presence of missing data; American Statistical Association; Journal of The American Statistical Association; 107; 499; 9-2012; 1178-1186
dc.identifier.issn
0162-1459
dc.identifier.uri
http://hdl.handle.net/11336/68375
dc.description.abstract
Two main issues regarding data quality are data contamination (outliers) and data completion (missing data). These two problems have attracted much attention and research but surprisingly, they are seldom considered together. Popular robust methods such as S-estimators of multivariate location and scatter offer protection against outliers but cannot deal with missing data, except for the obviously inefficient approach of deleting all incomplete cases. We generalize the definition of S-estimators of multivariate location and scatter to simultaneously deal with missing data and outliers. We show that the proposed estimators are strongly consistent under elliptical models when data are missing completely at random. We derive an algorithm similar to the Expectation-Maximization algorithm for computing the proposed estimators. This algorithm is initialized by an extension for missing data of the minimum volume ellipsoid. We assess the performance of our proposal by Monte Carlo simulation and give some real data examples. This article has supplementary material online.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Statistical Association
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Consistent
dc.subject
Elliptical Distribution
dc.subject
Em Algorithm
dc.subject
Fixed Point Equation
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust estimation of multivariate location and scatter in the presence of missing data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-16T18:28:19Z
dc.journal.volume
107
dc.journal.number
499
dc.journal.pagination
1178-1186
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Danilov, Mike. Google; Estados Unidos
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
dc.description.fil
Fil: Zamar, Ruben Horacio. University of British Columbia; Canadá
dc.journal.title
Journal of The American Statistical Association
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2012.699792
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2012.699792
Archivos asociados