Artículo
Robust estimation of multivariate location and scatter in the presence of missing data
Fecha de publicación:
09/2012
Editorial:
American Statistical Association
Revista:
Journal of The American Statistical Association
ISSN:
0162-1459
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Two main issues regarding data quality are data contamination (outliers) and data completion (missing data). These two problems have attracted much attention and research but surprisingly, they are seldom considered together. Popular robust methods such as S-estimators of multivariate location and scatter offer protection against outliers but cannot deal with missing data, except for the obviously inefficient approach of deleting all incomplete cases. We generalize the definition of S-estimators of multivariate location and scatter to simultaneously deal with missing data and outliers. We show that the proposed estimators are strongly consistent under elliptical models when data are missing completely at random. We derive an algorithm similar to the Expectation-Maximization algorithm for computing the proposed estimators. This algorithm is initialized by an extension for missing data of the minimum volume ellipsoid. We assess the performance of our proposal by Monte Carlo simulation and give some real data examples. This article has supplementary material online.
Palabras clave:
Consistent
,
Elliptical Distribution
,
Em Algorithm
,
Fixed Point Equation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Danilov, Mike; Yohai, Victor Jaime; Zamar, Ruben Horacio; Robust estimation of multivariate location and scatter in the presence of missing data; American Statistical Association; Journal of The American Statistical Association; 107; 499; 9-2012; 1178-1186
Compartir
Altmétricas