Mostrar el registro sencillo del ítem
dc.contributor.author
Bank, Bernd
dc.contributor.author
Giusti, Marc
dc.contributor.author
Heintz, Joos Ulrich
dc.contributor.author
Lehmann, Lutz
dc.contributor.author
Pardo, Luis Miguel
dc.date.available
2019-01-21T22:29:19Z
dc.date.issued
2012-02
dc.identifier.citation
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Lehmann, Lutz; Pardo, Luis Miguel; Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces; Springer; Foundations Of Computational Mathematics; 12; 1; 2-2012; 75-122
dc.identifier.issn
1615-3375
dc.identifier.uri
http://hdl.handle.net/11336/68345
dc.description.abstract
For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0}ℝ is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non-singular real solution and, if this is the case, we exhibit one for each generically smooth connected component of {F=0}ℝ. We design a family of elimination algorithms of intrinsic complexity which solves this problem. In the worst case, the complexity of our algorithms does not exceed the already known extrinsic complexity bound of (nd)O(n) for the elimination problem under consideration, where n is the number of indeterminates of F and d its (positive) degree. In the case that the real variety defined by F is smooth, there already exist algorithms of intrinsic complexity that solve our problem. However, these algorithms cannot be used in case when F=0 admits F-singular real solutions. An elimination algorithm of intrinsic complexity presupposes that the polynomial F is encoded by an essentially division-free arithmetic circuit of size L (i. e., F can be evaluated by means of L additions, subtractions and multiplications, using scalars from a previously fixed real ground field, say ℚ) and that there is given an invariant δ(F) which (roughly speaking) depends only on the geometry of the complex hypersurface defined by F. The complexity of the algorithm (measured in terms of the number of arithmetic operations in ℚ) is then linear in L and polynomial in n,d and δ(F). In order to find such a geometric invariant δ(F), we consider suitable incidence varieties which in fact are algebraic families of dual polar varieties of the complex hypersurface defined by F. The generic dual polar varieties of these incidence varieties are called bipolar varieties of the equation F=0. The maximal degree of these bipolar varieties then becomes the essential ingredient of our invariant δ(F).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Degree of Varieties
dc.subject
Intrinsic Complexity
dc.subject
Polar And Bipolar Varieties
dc.subject
Real Polynomial Equation Solving
dc.subject
Singularities
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-17T14:11:55Z
dc.identifier.eissn
1615-3383
dc.journal.volume
12
dc.journal.number
1
dc.journal.pagination
75-122
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Bank, Bernd. Universität zu Berlin; Alemania
dc.description.fil
Fil: Giusti, Marc. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Cantabria; España
dc.description.fil
Fil: Lehmann, Lutz. Universität zu Berlin; Alemania
dc.description.fil
Fil: Pardo, Luis Miguel. Universidad de Cantabria; España
dc.journal.title
Foundations Of Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-011-9112-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10208-011-9112-6
Archivos asociados