Mostrar el registro sencillo del ítem

dc.contributor.author
Bank, Bernd  
dc.contributor.author
Giusti, Marc  
dc.contributor.author
Heintz, Joos Ulrich  
dc.contributor.author
Lehmann, Lutz  
dc.contributor.author
Pardo, Luis Miguel  
dc.date.available
2019-01-21T22:29:19Z  
dc.date.issued
2012-02  
dc.identifier.citation
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Lehmann, Lutz; Pardo, Luis Miguel; Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces; Springer; Foundations Of Computational Mathematics; 12; 1; 2-2012; 75-122  
dc.identifier.issn
1615-3375  
dc.identifier.uri
http://hdl.handle.net/11336/68345  
dc.description.abstract
For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0}ℝ is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non-singular real solution and, if this is the case, we exhibit one for each generically smooth connected component of {F=0}ℝ. We design a family of elimination algorithms of intrinsic complexity which solves this problem. In the worst case, the complexity of our algorithms does not exceed the already known extrinsic complexity bound of (nd)O(n) for the elimination problem under consideration, where n is the number of indeterminates of F and d its (positive) degree. In the case that the real variety defined by F is smooth, there already exist algorithms of intrinsic complexity that solve our problem. However, these algorithms cannot be used in case when F=0 admits F-singular real solutions. An elimination algorithm of intrinsic complexity presupposes that the polynomial F is encoded by an essentially division-free arithmetic circuit of size L (i. e., F can be evaluated by means of L additions, subtractions and multiplications, using scalars from a previously fixed real ground field, say ℚ) and that there is given an invariant δ(F) which (roughly speaking) depends only on the geometry of the complex hypersurface defined by F. The complexity of the algorithm (measured in terms of the number of arithmetic operations in ℚ) is then linear in L and polynomial in n,d and δ(F). In order to find such a geometric invariant δ(F), we consider suitable incidence varieties which in fact are algebraic families of dual polar varieties of the complex hypersurface defined by F. The generic dual polar varieties of these incidence varieties are called bipolar varieties of the equation F=0. The maximal degree of these bipolar varieties then becomes the essential ingredient of our invariant δ(F).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Degree of Varieties  
dc.subject
Intrinsic Complexity  
dc.subject
Polar And Bipolar Varieties  
dc.subject
Real Polynomial Equation Solving  
dc.subject
Singularities  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-17T14:11:55Z  
dc.identifier.eissn
1615-3383  
dc.journal.volume
12  
dc.journal.number
1  
dc.journal.pagination
75-122  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Bank, Bernd. Universität zu Berlin; Alemania  
dc.description.fil
Fil: Giusti, Marc. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Cantabria; España  
dc.description.fil
Fil: Lehmann, Lutz. Universität zu Berlin; Alemania  
dc.description.fil
Fil: Pardo, Luis Miguel. Universidad de Cantabria; España  
dc.journal.title
Foundations Of Computational Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-011-9112-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10208-011-9112-6