Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces

Bank, Bernd; Giusti, Marc; Heintz, Joos UlrichIcon ; Lehmann, Lutz; Pardo, Luis Miguel
Fecha de publicación: 02/2012
Editorial: Springer
Revista: Foundations Of Computational Mathematics
ISSN: 1615-3375
e-ISSN: 1615-3383
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0}ℝ is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non-singular real solution and, if this is the case, we exhibit one for each generically smooth connected component of {F=0}ℝ. We design a family of elimination algorithms of intrinsic complexity which solves this problem. In the worst case, the complexity of our algorithms does not exceed the already known extrinsic complexity bound of (nd)O(n) for the elimination problem under consideration, where n is the number of indeterminates of F and d its (positive) degree. In the case that the real variety defined by F is smooth, there already exist algorithms of intrinsic complexity that solve our problem. However, these algorithms cannot be used in case when F=0 admits F-singular real solutions. An elimination algorithm of intrinsic complexity presupposes that the polynomial F is encoded by an essentially division-free arithmetic circuit of size L (i. e., F can be evaluated by means of L additions, subtractions and multiplications, using scalars from a previously fixed real ground field, say ℚ) and that there is given an invariant δ(F) which (roughly speaking) depends only on the geometry of the complex hypersurface defined by F. The complexity of the algorithm (measured in terms of the number of arithmetic operations in ℚ) is then linear in L and polynomial in n,d and δ(F). In order to find such a geometric invariant δ(F), we consider suitable incidence varieties which in fact are algebraic families of dual polar varieties of the complex hypersurface defined by F. The generic dual polar varieties of these incidence varieties are called bipolar varieties of the equation F=0. The maximal degree of these bipolar varieties then becomes the essential ingredient of our invariant δ(F).
Palabras clave: Degree of Varieties , Intrinsic Complexity , Polar And Bipolar Varieties , Real Polynomial Equation Solving , Singularities
Ver el registro completo
 
Archivos asociados
Tamaño: 1.536Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/68345
DOI: http://dx.doi.org/10.1007/s10208-011-9112-6
URL: https://link.springer.com/article/10.1007%2Fs10208-011-9112-6
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Lehmann, Lutz; Pardo, Luis Miguel; Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces; Springer; Foundations Of Computational Mathematics; 12; 1; 2-2012; 75-122
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES