Mostrar el registro sencillo del ítem

dc.contributor.author
Corbellini, Alejandro  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.contributor.author
Schiaffino, Silvia Noemi  
dc.date.available
2016-07-29T21:35:04Z  
dc.date.issued
2015-06  
dc.identifier.citation
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704  
dc.identifier.issn
0165-5515  
dc.identifier.uri
http://hdl.handle.net/11336/6823  
dc.description.abstract
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sage Publications Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Recommendation Algorithms  
dc.subject
Social Networks  
dc.subject
Large Scale Processing  
dc.subject
Graph Databases  
dc.subject
Graph Processing Frameworks  
dc.subject
Work Scheduling  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-29T18:33:36Z  
dc.journal.volume
41  
dc.journal.number
5  
dc.journal.pagination
686-704  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.journal.title
Journal Of Information Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.short  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/0165551515588669