Mostrar el registro sencillo del ítem
dc.contributor.author
Corbellini, Alejandro
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Godoy, Daniela Lis
dc.contributor.author
Zunino Suarez, Alejandro Octavio
dc.contributor.author
Schiaffino, Silvia Noemi
dc.date.available
2016-07-29T21:35:04Z
dc.date.issued
2015-06
dc.identifier.citation
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704
dc.identifier.issn
0165-5515
dc.identifier.uri
http://hdl.handle.net/11336/6823
dc.description.abstract
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sage Publications Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Recommendation Algorithms
dc.subject
Social Networks
dc.subject
Large Scale Processing
dc.subject
Graph Databases
dc.subject
Graph Processing Frameworks
dc.subject
Work Scheduling
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-07-29T18:33:36Z
dc.journal.volume
41
dc.journal.number
5
dc.journal.pagination
686-704
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.journal.title
Journal Of Information Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.short
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/0165551515588669
Archivos asociados