Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks

Corbellini, AlejandroIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Godoy, Daniela LisIcon ; Zunino Suarez, Alejandro OctavioIcon ; Schiaffino, Silvia NoemiIcon
Fecha de publicación: 06/2015
Editorial: Sage Publications Ltd
Revista: Journal Of Information Science
ISSN: 0165-5515
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
Palabras clave: Recommendation Algorithms , Social Networks , Large Scale Processing , Graph Databases , Graph Processing Frameworks , Work Scheduling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.341Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/6823
URL: http://jis.sagepub.com/content/41/5/686.short
DOI: http://dx.doi.org/ 10.1177/0165551515588669
DOI: http://dx.doi.org/10.1177/0165551515588669
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES