Mostrar el registro sencillo del ítem
dc.contributor.author
Salibian Barrera, Matías Octavio

dc.contributor.author
Van Aelst, Stefan
dc.contributor.author
Yohai, Victor Jaime

dc.date.available
2019-01-14T20:47:55Z
dc.date.issued
2016-01
dc.identifier.citation
Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/68009
dc.description.abstract
ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Linear Regression
dc.subject
Robust Statistics
dc.subject
Robust Tests
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Robust tests for linear regression models based on τ-estimates
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-14T18:53:12Z
dc.journal.volume
93
dc.journal.pagination
436-455
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá
dc.description.fil
Fil: Van Aelst, Stefan. Katholikie Universiteit Leuven; Bélgica
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computational Statistics and Data Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2014.09.012
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314002734
Archivos asociados