Artículo
Robust tests for linear regression models based on τ-estimates
Fecha de publicación:
01/2016
Editorial:
Elsevier Science
Revista:
Computational Statistics and Data Analysis
ISSN:
0167-9473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approximation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests for nested linear models is studied.
Palabras clave:
Linear Regression
,
Robust Statistics
,
Robust Tests
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Salibian Barrera, Matías Octavio; Van Aelst, Stefan; Yohai, Victor Jaime; Robust tests for linear regression models based on τ-estimates; Elsevier Science; Computational Statistics and Data Analysis; 93; 1-2016; 436-455
Compartir
Altmétricas