Mostrar el registro sencillo del ítem

dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2016-07-28T19:35:11Z  
dc.date.issued
2014-02  
dc.identifier.citation
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; Distributed Job Scheduling based on Swarm Intelligence: A Survey; Elsevier; Computers & Electrical Engineering; 40; 1; 2-2014; 252-269  
dc.identifier.issn
0045-7906  
dc.identifier.uri
http://hdl.handle.net/11336/6776  
dc.description.abstract
Scientists and engineers need computational power to satisfy the increasing resource intensive nature of their simulations. For example, running Parameter Sweep Experiments (PSE) involve processing many independent jobs, given by multiple initial configurations (input parameter values) against the same program code. Hence, paradigms like Grid Computing and Cloud Computing are employed for gaining scalability. However, job scheduling in Grid and Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, specially those from Swarm Intelligence (SI), have been proposed. These techniques have the ability of searching for problem solutions in a very efficient way. This paper surveys SI-based job scheduling algorithms for bag-of-tasks applications(such as PSEs) on distributed computing environments, and uniformly compares them based on a derived comparison framework. We also discuss open problems and future research in the area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Bag-Of-Tasks Applications  
dc.subject
Grid Computing  
dc.subject
Cloud Computing  
dc.subject
Job Scheduling  
dc.subject
Swarm Intelligence  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Distributed Job Scheduling based on Swarm Intelligence: A Survey  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-28T18:33:05Z  
dc.journal.volume
40  
dc.journal.number
1  
dc.journal.pagination
252-269  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Computers & Electrical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compeleceng.2013.11.023  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045790613003054