Mostrar el registro sencillo del ítem
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.date.available
2016-07-28T19:35:11Z
dc.date.issued
2014-02
dc.identifier.citation
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; Distributed Job Scheduling based on Swarm Intelligence: A Survey; Elsevier; Computers & Electrical Engineering; 40; 1; 2-2014; 252-269
dc.identifier.issn
0045-7906
dc.identifier.uri
http://hdl.handle.net/11336/6776
dc.description.abstract
Scientists and engineers need computational power to satisfy the increasing resource intensive nature of their simulations. For example, running Parameter Sweep Experiments (PSE) involve processing many independent jobs, given by multiple initial configurations (input parameter values) against the same program code. Hence, paradigms like Grid Computing and Cloud Computing are employed for gaining scalability. However, job scheduling in Grid and Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, specially those from Swarm Intelligence (SI), have been proposed. These techniques have the ability of searching for problem solutions in a very efficient way. This paper surveys SI-based job scheduling algorithms for bag-of-tasks applications(such as PSEs) on distributed computing environments, and uniformly compares them based on a derived comparison framework. We also discuss open problems and future research in the area.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Bag-Of-Tasks Applications
dc.subject
Grid Computing
dc.subject
Cloud Computing
dc.subject
Job Scheduling
dc.subject
Swarm Intelligence
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Distributed Job Scheduling based on Swarm Intelligence: A Survey
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-07-28T18:33:05Z
dc.journal.volume
40
dc.journal.number
1
dc.journal.pagination
252-269
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
Computers & Electrical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compeleceng.2013.11.023
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045790613003054
Archivos asociados