Artículo
Distributed Job Scheduling based on Swarm Intelligence: A Survey
Fecha de publicación:
02/2014
Editorial:
Elsevier
Revista:
Computers & Electrical Engineering
ISSN:
0045-7906
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Scientists and engineers need computational power to satisfy the increasing resource intensive nature of their simulations. For example, running Parameter Sweep Experiments (PSE) involve processing many independent jobs, given by multiple initial configurations (input parameter values) against the same program code. Hence, paradigms like Grid Computing and Cloud Computing are employed for gaining scalability. However, job scheduling in Grid and Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, specially those from Swarm Intelligence (SI), have been proposed. These techniques have the ability of searching for problem solutions in a very efficient way. This paper surveys SI-based job scheduling algorithms for bag-of-tasks applications(such as PSEs) on distributed computing environments, and uniformly compares them based on a derived comparison framework. We also discuss open problems and future research in the area.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; Distributed Job Scheduling based on Swarm Intelligence: A Survey; Elsevier; Computers & Electrical Engineering; 40; 1; 2-2014; 252-269
Compartir
Altmétricas