Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detecting Students' Perception Style by using Games

Amandi, Analia AdrianaIcon ; Feldman, JuanIcon ; Monteserin, Ariel JoséIcon
Fecha de publicación: 02/2014
Editorial: Elsevier
Revista: Computers and Education
ISSN: 0360-1315
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Educación General; Ciencias de la Computación

Resumen

Knowing students´ learning styles allows us to improve their experience in an educational environment. Particularly, the perception style is one of the most important dimensions of the learning styles since it describes the way students perceive the world as well as the kind of learning content they prefer. Several approaches to detect students´ perception style according to Felder´s model have been proposed. However, these approaches exhibit several limitations that make their implementation difficult. Thus, we propose a novel approach to detect the perception style of a student by analyzing his/her interaction with games, namely puzzle games. To carry out this detection, we track how students play a puzzle game and extract information about this interaction. Then, we train a Naive Bayes Classifier to infer the students´ perception style by using the information extracted. We have evaluated our proposed approach with 47 Computer Engineering students. Experimental results showed that the perception style was successfully predicted through the use of games, with an accuracy of 85%. Finally, we conclude that games are a promising environment where the students´ perception style can be detected.
Palabras clave: Digital Games , Learning Styles , Naive Bayes Classifier , Perception Style
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 443.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/6773
URL: http://www.sciencedirect.com/science/article/pii/S0360131513002625
DOI: http://dx.doi.org/10.1016/j.compedu.2013.09.007
DOI: http://dx.doi.org/ 10.1016/j.compedu.2013.09.007
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Amandi, Analia Adriana; Feldman, Juan; Monteserin, Ariel José; Detecting Students' Perception Style by using Games; Elsevier; Computers and Education; 71; 2-2014; 14-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES