Mostrar el registro sencillo del ítem

dc.contributor.author
Cooke, Thomas F.  
dc.contributor.author
Yee, Muh-Ching  
dc.contributor.author
Muzzio, Marina  
dc.contributor.author
Sockell, Alexandra  
dc.contributor.author
Bell, Ryan  
dc.contributor.author
Cornejo, Omar E.  
dc.contributor.author
Kelley, Joanna L.  
dc.contributor.author
Bailliet, Graciela  
dc.contributor.author
Bravi, Claudio Marcelo  
dc.contributor.author
Bustamante, Carlos D.  
dc.contributor.author
Kenny, Eimear  
dc.date.available
2018-12-18T15:59:19Z  
dc.date.issued
2016-02  
dc.identifier.citation
Cooke, Thomas F.; Yee, Muh-Ching; Muzzio, Marina; Sockell, Alexandra; Bell, Ryan; et al.; GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data; Public Library of Science; Plos Genetics; 12; 2; 2-2016; 1-18  
dc.identifier.issn
1553-7390  
dc.identifier.uri
http://hdl.handle.net/11336/66656  
dc.description.abstract
Reduced representation sequencing methods such as genotyping-by-sequencing (GBS) enable low-cost measurement of genetic variation without the need for a reference genome assembly. These methods are widely used in genetic mapping and population genetics studies, especially with non-model organisms. Variant calling error rates, however, are higher in GBS than in standard sequencing, in particular due to restriction site polymorphisms, and few computational tools exist that specifically model and correct these errors. We developed a statistical method to remove errors caused by restriction site polymorphisms, implemented in the software package GBStools. We evaluated it in several simulated data sets, varying in number of samples, mean coverage and population mutation rate, and in two empirical human data sets (N = 8 and N = 63 samples). In our simulations, GBStools improved genotype accuracy more than commonly used filters such as Hardy-Weinberg equilibrium p-values. GBStools is most effective at removing genotype errors in data sets over 100 samples when coverage is 40X or higher, and the improvement is most pronounced in species with high genomic diversity. We also demonstrate the utility of GBS and GBStools for human population genetic inference in Argentine populations and reveal widely varying individual ancestry proportions and an excess of singletons, consistent with recent population growth.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Genotype by Sequencing  
dc.subject
Ngs  
dc.subject
Reduced Representation Libraries  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-04T19:55:05Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Cooke, Thomas F.. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Yee, Muh-Ching. Carnegie Institution for Science; Estados Unidos  
dc.description.fil
Fil: Muzzio, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. University of Stanford; Estados Unidos. Charles Bronfman Institute of Personalized Medicine; Estados Unidos  
dc.description.fil
Fil: Sockell, Alexandra. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Bell, Ryan. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Cornejo, Omar E.. University of Stanford; Estados Unidos. Washington State University; Estados Unidos  
dc.description.fil
Fil: Kelley, Joanna L.. University of Stanford; Estados Unidos. Washington State University; Estados Unidos  
dc.description.fil
Fil: Bailliet, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentina  
dc.description.fil
Fil: Bravi, Claudio Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina  
dc.description.fil
Fil: Bustamante, Carlos D.. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Kenny, Eimear. University of Stanford; Estados Unidos. Charles Bronfman Institute of Personalized Medicine; Estados Unidos. Icahn School of Medicine at Mount Sinai; Estados Unidos  
dc.journal.title
Plos Genetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1371/journal.pgen.1005631  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005631