Mostrar el registro sencillo del ítem
dc.contributor.author
Cooke, Thomas F.
dc.contributor.author
Yee, Muh-Ching
dc.contributor.author
Muzzio, Marina
dc.contributor.author
Sockell, Alexandra
dc.contributor.author
Bell, Ryan
dc.contributor.author
Cornejo, Omar E.
dc.contributor.author
Kelley, Joanna L.
dc.contributor.author
Bailliet, Graciela
dc.contributor.author
Bravi, Claudio Marcelo
dc.contributor.author
Bustamante, Carlos D.
dc.contributor.author
Kenny, Eimear
dc.date.available
2018-12-18T15:59:19Z
dc.date.issued
2016-02
dc.identifier.citation
Cooke, Thomas F.; Yee, Muh-Ching; Muzzio, Marina; Sockell, Alexandra; Bell, Ryan; et al.; GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data; Public Library of Science; Plos Genetics; 12; 2; 2-2016; 1-18
dc.identifier.issn
1553-7390
dc.identifier.uri
http://hdl.handle.net/11336/66656
dc.description.abstract
Reduced representation sequencing methods such as genotyping-by-sequencing (GBS) enable low-cost measurement of genetic variation without the need for a reference genome assembly. These methods are widely used in genetic mapping and population genetics studies, especially with non-model organisms. Variant calling error rates, however, are higher in GBS than in standard sequencing, in particular due to restriction site polymorphisms, and few computational tools exist that specifically model and correct these errors. We developed a statistical method to remove errors caused by restriction site polymorphisms, implemented in the software package GBStools. We evaluated it in several simulated data sets, varying in number of samples, mean coverage and population mutation rate, and in two empirical human data sets (N = 8 and N = 63 samples). In our simulations, GBStools improved genotype accuracy more than commonly used filters such as Hardy-Weinberg equilibrium p-values. GBStools is most effective at removing genotype errors in data sets over 100 samples when coverage is 40X or higher, and the improvement is most pronounced in species with high genomic diversity. We also demonstrate the utility of GBS and GBStools for human population genetic inference in Argentine populations and reveal widely varying individual ancestry proportions and an excess of singletons, consistent with recent population growth.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Genotype by Sequencing
dc.subject
Ngs
dc.subject
Reduced Representation Libraries
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-04T19:55:05Z
dc.journal.volume
12
dc.journal.number
2
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Cooke, Thomas F.. University of Stanford; Estados Unidos
dc.description.fil
Fil: Yee, Muh-Ching. Carnegie Institution for Science; Estados Unidos
dc.description.fil
Fil: Muzzio, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. University of Stanford; Estados Unidos. Charles Bronfman Institute of Personalized Medicine; Estados Unidos
dc.description.fil
Fil: Sockell, Alexandra. University of Stanford; Estados Unidos
dc.description.fil
Fil: Bell, Ryan. University of Stanford; Estados Unidos
dc.description.fil
Fil: Cornejo, Omar E.. University of Stanford; Estados Unidos. Washington State University; Estados Unidos
dc.description.fil
Fil: Kelley, Joanna L.. University of Stanford; Estados Unidos. Washington State University; Estados Unidos
dc.description.fil
Fil: Bailliet, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentina
dc.description.fil
Fil: Bravi, Claudio Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
dc.description.fil
Fil: Bustamante, Carlos D.. University of Stanford; Estados Unidos
dc.description.fil
Fil: Kenny, Eimear. University of Stanford; Estados Unidos. Charles Bronfman Institute of Personalized Medicine; Estados Unidos. Icahn School of Medicine at Mount Sinai; Estados Unidos
dc.journal.title
Plos Genetics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1371/journal.pgen.1005631
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005631
Archivos asociados