Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data

Cooke, Thomas F.; Yee, Muh-Ching; Muzzio, MarinaIcon ; Sockell, Alexandra; Bell, Ryan; Cornejo, Omar E.; Kelley, Joanna L.; Bailliet, GracielaIcon ; Bravi, Claudio MarceloIcon ; Bustamante, Carlos D.; Kenny, Eimear
Fecha de publicación: 02/2016
Editorial: Public Library of Science
Revista: Plos Genetics
ISSN: 1553-7390
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Reduced representation sequencing methods such as genotyping-by-sequencing (GBS) enable low-cost measurement of genetic variation without the need for a reference genome assembly. These methods are widely used in genetic mapping and population genetics studies, especially with non-model organisms. Variant calling error rates, however, are higher in GBS than in standard sequencing, in particular due to restriction site polymorphisms, and few computational tools exist that specifically model and correct these errors. We developed a statistical method to remove errors caused by restriction site polymorphisms, implemented in the software package GBStools. We evaluated it in several simulated data sets, varying in number of samples, mean coverage and population mutation rate, and in two empirical human data sets (N = 8 and N = 63 samples). In our simulations, GBStools improved genotype accuracy more than commonly used filters such as Hardy-Weinberg equilibrium p-values. GBStools is most effective at removing genotype errors in data sets over 100 samples when coverage is 40X or higher, and the improvement is most pronounced in species with high genomic diversity. We also demonstrate the utility of GBS and GBStools for human population genetic inference in Argentine populations and reveal widely varying individual ancestry proportions and an excess of singletons, consistent with recent population growth.
Palabras clave: Genotype by Sequencing , Ngs , Reduced Representation Libraries
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.418Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/66656
DOI: https://dx.doi.org/10.1371/journal.pgen.1005631
URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005631
Colecciones
Articulos(IMBICE)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA CELULAR (I)
Citación
Cooke, Thomas F.; Yee, Muh-Ching; Muzzio, Marina; Sockell, Alexandra; Bell, Ryan; et al.; GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data; Public Library of Science; Plos Genetics; 12; 2; 2-2016; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES