Mostrar el registro sencillo del ítem
dc.contributor.author
Rios, Carlos

dc.contributor.author
Schiaffino, Silvia Noemi

dc.contributor.author
Godoy, Daniela Lis

dc.date.available
2018-11-21T18:52:15Z
dc.date.issued
2017-08
dc.identifier.citation
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; On the impact of neighborhood selection strategies for recommender systems in LBSNs; Springer; Lecture Notes in Computer Science; 10061 LNAI; 8-2017; 196-207
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/64880
dc.description.abstract
Location-based social networks (LBSNs) have emerged as a new concept in online social media, due to the widespread adoption of mobile devices and location-based services. LBSNs leverage technologies such as GPS, Web 2.0 and smartphones to allow users to share their locations (check-ins), search for places of interest or POIs (Point of Interest), look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. To take advantage of the information that users share in these networks, Location-based Recommender Systems (LBRSs) generate suggestions based on the application of different recommendation techniques, being collaborative filtering (CF) one of the most traditional ones. In this article we analyze different strategies for selecting neighbors in the classic CF approach, considering information contained in the users’ social network, common visits, and place of residence as influential factors. The proposed approaches were evaluated using data from a popular location based social network, showing improvements over the classic collaborative filtering approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Location Based Social Network
dc.subject
Recommender Systems
dc.subject
Collaborative Filtering
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
On the impact of neighborhood selection strategies for recommender systems in LBSNs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-05T16:24:28Z
dc.journal.volume
10061 LNAI
dc.journal.pagination
196-207
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Lecture Notes in Computer Science

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/978-3-319-62434-1_16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-3-319-62434-1_16
Archivos asociados