Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the impact of neighborhood selection strategies for recommender systems in LBSNs

Rios, CarlosIcon ; Schiaffino, Silvia NoemiIcon ; Godoy, Daniela LisIcon
Fecha de publicación: 08/2017
Editorial: Springer
Revista: Lecture Notes in Computer Science
ISSN: 0302-9743
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Location-based social networks (LBSNs) have emerged as a new concept in online social media, due to the widespread adoption of mobile devices and location-based services. LBSNs leverage technologies such as GPS, Web 2.0 and smartphones to allow users to share their locations (check-ins), search for places of interest or POIs (Point of Interest), look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. To take advantage of the information that users share in these networks, Location-based Recommender Systems (LBRSs) generate suggestions based on the application of different recommendation techniques, being collaborative filtering (CF) one of the most traditional ones. In this article we analyze different strategies for selecting neighbors in the classic CF approach, considering information contained in the users’ social network, common visits, and place of residence as influential factors. The proposed approaches were evaluated using data from a popular location based social network, showing improvements over the classic collaborative filtering approach.
Palabras clave: Location Based Social Network , Recommender Systems , Collaborative Filtering
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 357.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/64880
URL: http://link.springer.com/10.1007/978-3-319-62434-1_16
DOI: https://dx.doi.org/10.1007/978-3-319-62434-1_16
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; On the impact of neighborhood selection strategies for recommender systems in LBSNs; Springer; Lecture Notes in Computer Science; 10061 LNAI; 8-2017; 196-207
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES