Mostrar el registro sencillo del ítem

dc.contributor.author
Yang, Zhao  
dc.contributor.author
Perotti, Juan Ignacio  
dc.contributor.author
Tessone, Claudio J.  
dc.date.available
2018-11-20T17:53:10Z  
dc.date.issued
2017-11-14  
dc.identifier.citation
Yang, Zhao; Perotti, Juan Ignacio; Tessone, Claudio J.; Hierarchical benchmark graphs for testing community detection algorithms; American Physical Society; Physical Review E; 96; 5; 14-11-2017; 52311-52311  
dc.identifier.issn
2470-0053  
dc.identifier.uri
http://hdl.handle.net/11336/64765  
dc.description.abstract
Hierarchical organization is an important, prevalent characteristic of complex systems; to understand their organization, the study of the underlying (generally complex) networks that describe the interactions between their constituents plays a central role. Numerous previous works have shown that many real-world networks in social, biologic, and technical systems present hierarchical organization, often in the form of a hierarchy of community structures. Many artificial benchmark graphs have been proposed to test different community detection methods, but no benchmark has been developed to thoroughly test the detection of hierarchical community structures. In this study, we fill this vacancy by extending the Lancichinetti-Fortunato-Radicchi (LFR) ensemble of benchmark graphs, adopting the rule of constructing hierarchical networks proposed by Ravasz and Barabási. We employ this benchmark to test three of the most popular community detection algorithms and quantify their accuracy using the traditional mutual information and the recently introduced hierarchical mutual information. The results indicate that the Ravasz-Barabási-Lancichinetti-Fortunato-Radicchi (RB-LFR) benchmark generates a complex hierarchical structure constituting a challenging benchmark for the considered community detection methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Redes Complejas  
dc.subject
Jerarquías  
dc.subject
Detección de Comunidades  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hierarchical benchmark graphs for testing community detection algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-23T21:21:57Z  
dc.identifier.eissn
2470-0045  
dc.journal.volume
96  
dc.journal.number
5  
dc.journal.pagination
52311-52311  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Yang, Zhao. Universitat Zurich; Suiza  
dc.description.fil
Fil: Perotti, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Imt Institute For Advanced Studies Lucca; Italia  
dc.description.fil
Fil: Tessone, Claudio J.. Imt Institute For Advanced Studies Lucca; Italia. Universitat Zurich; Suiza  
dc.journal.title
Physical Review E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.052311  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1103/PhysRevE.96.052311  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1708.06969