Artículo
Hierarchical benchmark graphs for testing community detection algorithms
Fecha de publicación:
14/11/2017
Editorial:
American Physical Society
Revista:
Physical Review E
ISSN:
2470-0053
e-ISSN:
2470-0045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Hierarchical organization is an important, prevalent characteristic of complex systems; to understand their organization, the study of the underlying (generally complex) networks that describe the interactions between their constituents plays a central role. Numerous previous works have shown that many real-world networks in social, biologic, and technical systems present hierarchical organization, often in the form of a hierarchy of community structures. Many artificial benchmark graphs have been proposed to test different community detection methods, but no benchmark has been developed to thoroughly test the detection of hierarchical community structures. In this study, we fill this vacancy by extending the Lancichinetti-Fortunato-Radicchi (LFR) ensemble of benchmark graphs, adopting the rule of constructing hierarchical networks proposed by Ravasz and Barabási. We employ this benchmark to test three of the most popular community detection algorithms and quantify their accuracy using the traditional mutual information and the recently introduced hierarchical mutual information. The results indicate that the Ravasz-Barabási-Lancichinetti-Fortunato-Radicchi (RB-LFR) benchmark generates a complex hierarchical structure constituting a challenging benchmark for the considered community detection methods.
Palabras clave:
Redes Complejas
,
Jerarquías
,
Detección de Comunidades
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Yang, Zhao; Perotti, Juan Ignacio; Tessone, Claudio J.; Hierarchical benchmark graphs for testing community detection algorithms; American Physical Society; Physical Review E; 96; 5; 14-11-2017; 52311-52311
Compartir
Altmétricas