Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context

Gimenez Romero, Javier AlejandroIcon ; Amicarelli, Adriana NatachaIcon ; Toibero, Juan MarcosIcon ; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo OscarIcon
Fecha de publicación: 06/2018
Editorial: Springer
Revista: International Journal of Automation and Computing
ISSN: 1476-8186
e-ISSN: 1751-8520
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.
Palabras clave: Iterated Conditional Modes , Markov Random Fields , Modelling , On-Line Solver , Simultaneous Localization And Mapping
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.816Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/63541
DOI: http://dx.doi.org/10.1007/s11633-017-1109-4
URL: https://link.springer.com/article/10.1007%2Fs11633-017-1109-4
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context; Springer; International Journal of Automation and Computing; 15; 3; 6-2018; 310-324
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES