Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ecosystem modeling using artificial neural networks: An archaeological tool

Burry, Lidia Susana; Marconetto, María BernardaIcon ; Somoza, Mariano; Palacio, Patricia IreneIcon ; Trivi, Matilde Elena; D´Antoni, Héctor
Fecha de publicación: 04/2018
Editorial: Elsevier Ltd
Revista: Journal of Archaeological Science: Reports
ISSN: 2352-409X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas; Historia; Otras Sociología

Resumen

Prediction of past Normalized Difference Vegetation Index (paleo-NDVI) in Valle de Ambato (Catamarca, Argentina) in the periods of 550–650 and 1550–1650 CE was carried out to test the efficacy of Artificial Neural Network (ANN) to predict past environments for Archaeology. This work shows that both subtropical Yunga and xerophytic Chaqueña vegetations respond in contrasting fashion to changes in climate forcings. To predict the past an ANN perceptron multilayer model was used. Modern NDVI data and Tree-Ring data were obtained from NOAA-Paleoclimate, and other public sources. These data were used to train the model. Real data and predictions were close (Pearson correlation 0.83–0.90) and warranted the following step, hindcasting. Important paleo-NDVI fluctuations lasting 15 to 20 years were identified in both periods under study. The paleo-NDVI fluctuations in the earlier period were probably related to the unidentified eruption of 583. The fluctuations in the later period appear related to the eruption of 1600 of the Huaynaputina volcano (SW Peru). These findings suggest that the model accurately identified vegetation fluctuations in response to changes in the volcanic forcing. Hence, the ANNs may be considered as apt tools for modeling past environments in support of archaeology.
Palabras clave: Argentina , Artificial Neural Network , Ecosystem Modeling , Hindcasting , Paleo-Ndvi
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.257Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/63298
URL: https://www.sciencedirect.com/science/article/pii/S2352409X16308112
DOI: https://doi.org/10.1016/j.jasrep.2017.07.013
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos(IDACOR)
Articulos de INSTITUTO DE ANTROPOLOGIA DE CORDOBA
Citación
Burry, Lidia Susana; Marconetto, María Bernarda; Somoza, Mariano; Palacio, Patricia Irene; Trivi, Matilde Elena; et al.; Ecosystem modeling using artificial neural networks: An archaeological tool; Elsevier Ltd; Journal of Archaeological Science: Reports; 18; 4-2018; 739-746
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES