Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Identification of Functionally Interconnected Neurons Using Factor Analysis

Soletta, Jorge HumbertoIcon ; Farfan, Fernando DanielIcon ; Albarracin, Ana LiaIcon ; Pizá, Alvaro GabrielIcon ; Lucianna, Facundo AdriánIcon ; Felice, Carmelo JoseIcon
Fecha de publicación: 04/2017
Editorial: Hindawi Publishing Corporation
Revista: Computational Intelligence and Neuroscience
ISSN: 1687-5265
e-ISSN: 1687-5273
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them.
Palabras clave: Synapses Interconnection , Granger Causality , Neural Networks , Factor Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.040Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/63170
URL: https://www.hindawi.com/journals/cin/2017/8056141/
DOI: https://doi.org/10.1155/2017/8056141
Colecciones
Articulos(INSIBIO)
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Citación
Soletta, Jorge Humberto; Farfan, Fernando Daniel; Albarracin, Ana Lia; Pizá, Alvaro Gabriel; Lucianna, Facundo Adrián; et al.; Identification of Functionally Interconnected Neurons Using Factor Analysis; Hindawi Publishing Corporation; Computational Intelligence and Neuroscience; 2017; 4-2017; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES