Artículo
Identification of Functionally Interconnected Neurons Using Factor Analysis
Soletta, Jorge Humberto
; Farfan, Fernando Daniel
; Albarracin, Ana Lia
; Pizá, Alvaro Gabriel
; Lucianna, Facundo Adrián
; Felice, Carmelo Jose
Fecha de publicación:
04/2017
Editorial:
Hindawi Publishing Corporation
Revista:
Computational Intelligence and Neuroscience
ISSN:
1687-5265
e-ISSN:
1687-5273
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INSIBIO)
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Citación
Soletta, Jorge Humberto; Farfan, Fernando Daniel; Albarracin, Ana Lia; Pizá, Alvaro Gabriel; Lucianna, Facundo Adrián; et al.; Identification of Functionally Interconnected Neurons Using Factor Analysis; Hindawi Publishing Corporation; Computational Intelligence and Neuroscience; 2017; 4-2017; 1-11
Compartir
Altmétricas