Mostrar el registro sencillo del ítem
dc.contributor.author
Sanchez, Mabel Cristina
dc.contributor.author
Alvarez Medina, Carlos Rodrigo
dc.contributor.author
Brandolin, Adriana
dc.date.available
2018-10-16T15:33:33Z
dc.date.issued
2008-08
dc.identifier.citation
Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana; A multivariate statistical process control procedure for BIAS identification in steady-state processes; John Wiley & Sons Inc; Aiche Journal; 54; 8; 8-2008; 2082-2088
dc.identifier.issn
0001-1541
dc.identifier.uri
http://hdl.handle.net/11336/62418
dc.description.abstract
In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Data Reconciliation
dc.subject
Statistical Analysis
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A multivariate statistical process control procedure for BIAS identification in steady-state processes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-12T14:46:44Z
dc.journal.volume
54
dc.journal.number
8
dc.journal.pagination
2082-2088
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Alvarez Medina, Carlos Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Aiche Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/aic.11547
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.11547
Archivos asociados