Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A multivariate statistical process control procedure for BIAS identification in steady-state processes

Sanchez, Mabel CristinaIcon ; Alvarez Medina, Carlos RodrigoIcon ; Brandolin, AdrianaIcon
Fecha de publicación: 08/2008
Editorial: John Wiley & Sons Inc
Revista: Aiche Journal
ISSN: 0001-1541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers.
Palabras clave: Data Reconciliation , Statistical Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 97.98Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/62418
DOI: https://dx.doi.org/10.1002/aic.11547
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.11547
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana; A multivariate statistical process control procedure for BIAS identification in steady-state processes; John Wiley & Sons Inc; Aiche Journal; 54; 8; 8-2008; 2082-2088
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES