Mostrar el registro sencillo del ítem

dc.contributor.author
Anderson, Lindsey N.  
dc.contributor.author
Oviedo, María Belén  
dc.contributor.author
Wong, Bryan M.  
dc.date.available
2018-10-04T13:10:03Z  
dc.date.issued
2017-04-24  
dc.identifier.citation
Anderson, Lindsey N.; Oviedo, María Belén; Wong, Bryan M.; Accurate Electron Affinities and Orbital Energies of Anions from a Nonempirically Tuned Range-Separated Density Functional Theory Approach; American Chemical Society; Journal of Chemical Theory and Computation; 13; 4; 24-4-2017; 1656-1666  
dc.identifier.issn
1549-9618  
dc.identifier.uri
http://hdl.handle.net/11336/61644  
dc.description.abstract
The treatment of atomic anions with Kohn-Sham density functional theory (DFT) has long been controversial because the highest occupied molecular orbital (HOMO) energy, EHOMO, is often calculated to be positive with most approximate density functionals. We assess the accuracy of orbital energies and electron affinities for all three rows of elements in the periodic table (H-Ar) using a variety of theoretical approaches and customized basis sets. Among all of the theoretical methods studied here, we find that a nonempirically tuned range-separated approach (constructed to satisfy DFT-Koopmans' theorem for the anionic electron system) provides the best accuracy for a variety of basis sets, even for small basis sets where most functionals typically fail. Previous approaches to solve this conundrum of positive EHOMO values have utilized non-self-consistent methods; however, electronic properties, such as electronic couplings/gradients (which require a self-consistent potential and energy), become ill-defined with these approaches. In contrast, the nonempirically tuned range-separated procedure used here yields well-defined electronic couplings/gradients and correct EHOMO values because both the potential and resulting electronic energy are computed self-consistently. Orbital energies and electron affinities are further analyzed in the context of the electronic energy as a function of electronic number (including fractional numbers of electrons) to provide a stringent assessment of self-interaction errors for these complex anion systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Electron Affinity  
dc.subject
Anions  
dc.subject
Lc-Dft  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Accurate Electron Affinities and Orbital Energies of Anions from a Nonempirically Tuned Range-Separated Density Functional Theory Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-10T15:46:51Z  
dc.identifier.eissn
1549-9626  
dc.journal.volume
13  
dc.journal.number
4  
dc.journal.pagination
1656-1666  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Anderson, Lindsey N.. University of California; Estados Unidos  
dc.description.fil
Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos  
dc.description.fil
Fil: Wong, Bryan M.. University of California; Estados Unidos  
dc.journal.title
Journal of Chemical Theory and Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.6b01249  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jctc.6b01249