Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Accurate Electron Affinities and Orbital Energies of Anions from a Nonempirically Tuned Range-Separated Density Functional Theory Approach

Anderson, Lindsey N.; Oviedo, María BelénIcon ; Wong, Bryan M.
Fecha de publicación: 24/04/2017
Editorial: American Chemical Society
Revista: Journal of Chemical Theory and Computation
ISSN: 1549-9618
e-ISSN: 1549-9626
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

The treatment of atomic anions with Kohn-Sham density functional theory (DFT) has long been controversial because the highest occupied molecular orbital (HOMO) energy, EHOMO, is often calculated to be positive with most approximate density functionals. We assess the accuracy of orbital energies and electron affinities for all three rows of elements in the periodic table (H-Ar) using a variety of theoretical approaches and customized basis sets. Among all of the theoretical methods studied here, we find that a nonempirically tuned range-separated approach (constructed to satisfy DFT-Koopmans' theorem for the anionic electron system) provides the best accuracy for a variety of basis sets, even for small basis sets where most functionals typically fail. Previous approaches to solve this conundrum of positive EHOMO values have utilized non-self-consistent methods; however, electronic properties, such as electronic couplings/gradients (which require a self-consistent potential and energy), become ill-defined with these approaches. In contrast, the nonempirically tuned range-separated procedure used here yields well-defined electronic couplings/gradients and correct EHOMO values because both the potential and resulting electronic energy are computed self-consistently. Orbital energies and electron affinities are further analyzed in the context of the electronic energy as a function of electronic number (including fractional numbers of electrons) to provide a stringent assessment of self-interaction errors for these complex anion systems.
Palabras clave: Electron Affinity , Anions , Lc-Dft
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.018Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/61644
URL: https://pubs.acs.org/doi/10.1021/acs.jctc.6b01249
DOI: http://dx.doi.org/10.1021/acs.jctc.6b01249
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Anderson, Lindsey N.; Oviedo, María Belén; Wong, Bryan M.; Accurate Electron Affinities and Orbital Energies of Anions from a Nonempirically Tuned Range-Separated Density Functional Theory Approach; American Chemical Society; Journal of Chemical Theory and Computation; 13; 4; 24-4-2017; 1656-1666
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES