Artículo
Patient non-specific algorithm for seizures detection in scalp EEG
Fecha de publicación:
04/2016
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Computers In Biology And Medicine
ISSN:
0010-4825
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed. A new set of features is proposed based on an average process. The seizure detection consisted in finding the EEG segments with seizures and their onset and offset points. The proposed offline method was tested in scalp EEG records of 24-48 h of duration of 18 epileptic patients. The method reached mean values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.
Palabras clave:
Detection
,
Eeg
,
Epilepsy
,
Seizure
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Diez, Pablo Federico; Laciar Leber, Eric; Patient non-specific algorithm for seizures detection in scalp EEG; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 71; 4-2016; 128-134
Compartir
Altmétricas