Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Kewei
dc.contributor.author
Crooks, Elaine
dc.contributor.author
Orlando, Antonio
dc.date.available
2018-09-28T18:20:48Z
dc.date.issued
2016-12
dc.identifier.citation
Zhang, Kewei; Crooks, Elaine; Orlando, Antonio; Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 48; 6; 12-2016; 4126-4154
dc.identifier.issn
0036-1410
dc.identifier.uri
http://hdl.handle.net/11336/61259
dc.description.abstract
We introduce Lipschitz continuous and C1;1 geometric approximation and interpolation methods for sampled bounded uniformly continuous functions over compact sets and over complements of bounded open sets in Rn by using compensated convex transforms. Error estimates are provided for the approximations of bounded uniformly continuous functions, of Lipschitz functions, and of C1;1 functions. We also prove that our approximation methods, which are differentiation and integration free and not sensitive to sample type, are stable with respect to the Hausdorff distance between samples.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Approximation
dc.subject
Compensated Convex Transforms
dc.subject
Error Estimates
dc.subject
Hausdorff Stability
dc.subject
Interpolation
dc.subject
Lipschitz Functions
dc.subject
Local-Lipschitz Approximation
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T16:30:32Z
dc.journal.volume
48
dc.journal.number
6
dc.journal.pagination
4126-4154
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Philadelphia
dc.description.fil
Fil: Zhang, Kewei. The University of Nottingham; Reino Unido
dc.description.fil
Fil: Crooks, Elaine. Swansea University; Reino Unido
dc.description.fil
Fil: Orlando, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras ; Argentina
dc.journal.title
Siam Journal On Mathematical Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/15M1045673
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1137/15M1045673
Archivos asociados